
Linear instability in viscoelastic fluid convection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 1281

(http://iopscience.iop.org/0953-8984/2/5/019)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 1281-1290. Printed in the UK 

Linear instability in viscoelastic fluid convection 
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Abstract. The onset of convection in a viscoelastic fluid that obeys the Jeffreys model is 
investigated. Two boundary conditions have been considered separately: free-free and 
rigid-rigid. The role played by the retardation time, characteristic of the Jeffreys model, is 
emphasised. The threshold values of the parameters (critical Rayleigh number, critical 
wavenumber, onset frequency, etc.) for stationary and oscillatory convection are obtained. 
The frontier between oscillatory and stationary convection is calculated and the possibility 
to obtain a codimension-two point is discussed. 

1. Introduction 

Most liquids exhibit viscous and elastic properties for sufficiently small time scales. 
Studies on light scattering and molecular dynamic simulations show that in order to 
recover experimental results one must generalise the Newton law relating linearly the 
extra stress tensor 9 and the rate of strain tensor % (Newtonian fluid) [l]. In particular, 
this generalisation is necessary in polymeric fluids, glass forming systems, etc. Moreover 
in these systems the stress tensor enters as an independent variable in the hydrodynamical 
description. The determination of the dependence of 4 = Si(%) is the main object of 
rheology. The dynamics of the stress tensor give rise to a rich variety of hydrodynamics 
effects, that cannot appear in the usual Newtonian liquids [ 2 ] .  

In the present study a detailed stability analysis is presented of a layer of fluid 
with viscoelastic properties heated from below. Usually, the viscoelastic effects are 
introduced by the Maxwell model, which is the simplest possible model taking into 
account the stress tensor relaxation. However, as discussed by rheologists this model 
does not fit the rich variety of viscoelastic effects that can be observed in complex 
rheological materials [ 2 ] .  One of the models that shows good agreement with experi- 
ments is the so-called Oldroyd model. For a small shear (linear regime) this model 
reduces to the Jeffreys model that includes the Maxwell fluid as a particular case. 
Therefore, a more general linear stability analysis of convection in a viscoelastic fluid 
can be made by taking the Jeffreys model. Moreover, polymeric solutions are, in general, 
binary mixtures and this can give interesting dynamical effects [3], but here, for the sake 
of simplicity, we focus on the viscoelastic properties only. 

Convection in Jeffreysviscoelasticfluids has three characteristic time scales: avertical 
thermal diffusion time t, characteristic of convective motions, a stress relaxation time 
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A ,  characteristic of the Maxwell viscoelastic model and a retardation time A2, that 
accounts for the corrections of the Jeffreys model. This naturally gives two non-dimen- 
sional parameters = A l/t and A = &/A, which enter in the description. The parameter 
r is very small in normal liquids (r < 1O-Io) but ranges from 0.01 in dilute polymers, to 
more than lo4 in polymer melts [4]. The parameter A varies in the interval [0, 11: A = 0 
corresponds to a Maxwell fluid, while with A = 1 the Newtonian fluid is recovered. 

Some results on the linear stability problem of convection in viscoelastic fluid have 
been treated by some authors [5] .  Besides the usual stationary convection these authors 
have found that an oscillatory state can also be obtained for certain values of the fluid 
parameters. This oscillatory state is the consequence of two competing timescales. It 
can be observed experimentally in the form of travelling or standing waves. A complete 
study of these solutions and their stability requires a non-linear analysis. (For particular 
cases some weakly non-linear studies have been made [6]; however, these studies do not 
allow a complete discussion of this problem.) Therefore, the present study can be viewed 
as a first step (linear theory) towards a non-linear stability analysis of convection in 
viscoelastic fluids. 

In most cases the stability problem of convection in a viscoelastic fluid have been 
performed theoretically under unrealistic free-free boundary conditions (BC) for which 
analytical solutions are possible. But, as stressed in similar problems of convection 
(binary mixtures) [7], Bccan introduce qualitative changes in the dynamics of the system. 
Therefore, we recast briefly the main results for free-free BC, before calculating stability 
with rigid-rigid BC. In the last case the solutions must be obtained numerically, but the 
results can be compared with experiments. One of the purposes of the present study is 
to determine the role of these BC on convection in a viscoelastic fluid. 

Oscillatory and stationary branches match at a given point where overstable motions 
lose their stability in favour of stationary convection. It is well known from general 
stability theory of dynamical systems that some interesting phenomena can be observed 
at those singular points [8]. Similar situations in convection in binary mixtures have been 
studied with some detail from both theoretical and experimental points of view, in 
particular the existence and observability of oscillatory modes and of codimension- 
two (CT) points [9-111. The competition between oscillatory and stationary modes of 
convection in Maxwell viscoelastic fluids has been discussed recently ([4] and Zielinska 
and co-workers [6]). However, this competition is found for wavenumbers and fre- 
quencies which seem very unrealistic and only for free-free BC. Another purpose of the 
present paper is to examine the influence of the parameter A of the Jeffreys model on 
the values of the wavenumbers and frequencies of stationary and oscillatory convection 
under different BC. 

The paper is organised as follows: in § 2 we discuss the main evolution equations and 
the constitutive equation of the Jeffreys viscoelastic model. In 8 3 we present the 
solutions and numerical results, separately in two sub-sections. In the first one we recast 
briefly the main results for free-free BC. After discussing the numerical recipe to solve 
the eigenvalue problem, the results for rigid-rigid boundary conditions are presented in 
§ 3.2. We focus on the competition between oscillatory and stationary convection for 
different values of the parameter A and the Prandtl number. The similarities and 
differences of convective solutions in these two cases are also discussed in this sub- 
section. This is followed by a general discussion and some conclusions in § 4. 

2. Equations of convection in viscoelastic fluids 

We consider a shallow layer of an incompressible fluid of depth d and of infinite horizontal 
extent. The fluid is heated from below and remains at rest until a critical temperature 
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gradient is reached. After assuming the Oberbeck-Boussinesq (OB) approximation the 
basic equations for this fluid can be written as 

v . u = o  (1) 
po[au/at  + U * V u ]  =' - v p  + v4 + pg (2) 
aT/at + U V T  = K V ~ T  (3) 

where U is the velocity field, p is the pressure, T the temperature, 4 the extra stress 
tensor and g is the acceleration due to gravity. As usual in the OB approximation one 
assumes that the fluid is incompressible except in the term of the gravitational force 
where p = po[ 1 - a( T - To)]  and the thermal expansion coefficient a and the thermal 
diffusivity K are constants. 

To solve these equations it is necessary to assume a constitutive relation between the 
extra pressure tensor 9 and the velocity gradient tensor V u .  One of the more general 
models to study complex rheological behaviour is the Oldroyd model with eight par- 
ameters [l]. As in the present paper we only intend to study linear properties we restrict 
this model to its linearised version, which takes the name of Jeffreys model, for which 
the constitutive relation writes as 

where (8 is the symmetric part of the strain tensor % = [Vu +  VU)^], p the shear viscosity 
coefficient, assumed to be constant in the OB approximation, and A and A, the relaxation 
time and the retardation time respectively (two quantities that are very small in normal 
fluids). Notice that A i  3 A 2  and that when A 2  = 0 we recover the Maxwell viscoelastic 
model while for A = A the model reduces to the Newtonian fluid. 

The stationary solution of the system of equations (1)-(4) is simply U = 0 , 4  = 0, T = 
T ,  - pz where /? is the adverse temperature gradient. The linear equations for the 
perturbations of this conduction state, after scaling the variables using d ,  d 2 / K ,  

K / d ,  p ~ / &  and pd as references for the length, time, velocity, extra stress tensor and 
temperature, respectively, take the form 

4 + A ,  a9/at  = p(% + A2 a%/at) (4) 

( e l a t  - V ) T  = w 

[(I + A r  a/at)v2 - (1 + r a/at)P-' d/at]v2w 
( 5 )  

= -(1 + rd /d t )RV:T (6) 
where P = p/poKis the Prandtl number, R = p o g a @ d 4 / p ~ i s  the Rayleigh number, r = 
A , K / d 2  the non-dimensional relaxation time, A = A 2 / A  the retardation ratio and 
v: = a2/ax2 + a2/ay2.  

a t z = 0 , 1  (7a) ( 9  

(ii) w = Dw = T =  0 a t z = 0 , 1  (7b) 

We study equations ( 5 )  and (6) with the following set of boundary conditions (BC) 

w = D ~ w  = T =  0 

(free-free and conducting 

(rigid-rigid and conducting) 
where D = d/dz .  As usual the solutions are developed in normal modes 

where W ( z )  and O(z) are the amplitudes of velocity and the temperature perturbations, 
k, and ky are the components of the wavenumber in the horizontal plane and o = or + iw 
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the growth factor. Equations ( 5 )  and (6) then become 
[a - (D2 - k 2 ) ] 0  = W (9) 

= (1 + ra)k2Re. (10) 

[(l + TAa)(D2 - k 2 )  - (1 + TO)P-'O](D~ - k2)W 

Equations (9) and (10)  and the BC (7) constitute an eigenvalue system for the linear 
stability problem, The eigenvalue problem has been solved by Vest and Arpaci [ 5 ]  for 
the Maxwell fluid. Green [ 5 ] ,  in an early article, analysed the Jeffreys model but only 
with free-free BC and without discussing conditions for coexisting modes. 

3. Solutions and numerical results 

The system loses stability when the real part of the growth rate is greater than zero 
U, 2 0. The marginal case U, = 0 separates stable and unstable regions. Then, two 
situations can appear: stationary convection, when the imaginary part also vanishes and 
oscillatory convection when this part is non-zero. 

We present the results of these eigenvalue problems for the two kinds of BC separately 
because the method of solution is different in each case. In both cases the curves 
of marginal stability, giving the dependence of R on k for stationary and oscillatory 
convection, are obtained. The minima of these curves determine the corresponding 
critical values R',,, and k", , .  (Here the subscripts o and s indicate oscillatory and 
stationary, respectively.) The values of these critical parameters for overstable and 
stationary convection are different. 

Then, if the system can choose its wavenumber freely (unbounded system) con- 
vection starts with that mode which has the minimum RC. As RS does not depend on the 
viscoelastic parameters we focus on overstable convection in the following. This is 
possible when R', G RE. More specifically we will study the particular case when these 
two thresholds are equal, i .e. ,  the frontier between overstable and stationary motions. 
We explore the regions in the parameters space in which these two modes can coexist, 
first for BC (i) (equation (7a ) )  where an analytical solution is possible and second for the 
realistic BC (ii) (equation (7b) ) .  

Another interesting situation can be found, when one imposes the wavenumber of 
convective motions externally (by means of lateral walls or by some external forcing). 
Then one can adjust the wavenumber to the value for which stationary and oscillatory 
curves meet and, therefore, w --., 0. At  this cT-point both marginally stable modes 
can coexist simultaneously and some interesting dynamical phenomena can occur [8]. 
However, this CT point is hardly observable under usual experimental conditions. 

3.1. Free-free boundary conditions 
Equations (9) and (10) coincide with the stationary case for Newtonian fluids. As a 
consequence the marginal curves for stationary convection are also identical in these two 
cases. These correspond to R, = (n2 + k2)3/k2,  giving the critical values for stationary 
convection RE = 27n4/4 for k :  = n / f i . F o r  oscillatory convection the marginal curve 
is given by Rosenblat [6] 

R ,  = R ,  - (1G2 + k 2 ) ~ * { [ ( 1 ~ 2  + k 2 ) r  + . ~ I P - ~  + (n2 + k2)rA)/k2 (11) 

(12) 

where w corresponds to the imaginary part of the growth parameter a, given by 

w 2  = [(n2 + k 2 ) r ( i  - A) - 1 - P - ~ ] / [ T * ( P - ~  + A)]. 



Linear instability in viscoelastic fluid convection 1285 

1500 zoooi / /  

/ /  / 
'./ / 

Figure 1. Marginal curves for free-free BC 

with P = 10, r, = 0.1. The full curve refers 
to stationary convection, the broken 
curves to overstability. 

200 t 

t j 

k c  

0 0.1 0 . 2  0.3 
h 

Figure 2. Critical Rayleigh number R' and critical wavenumber k' for stationary and oscil- 
latory instabilities, as a function of A for = 0.1, P = 10.0 (free-free BC). 

As w is real, this curve gives overstability only for w 2  > 0. The corresponding critical 
values RS, and k', for oscillatory convection may be obtained numerically. (From these 
values and (12) the corresponding critical frequency w c  is easily obtained.) 

In figure 1 we illustrate some typical marginal curves ( R  as a function of k ) .  The full 
curve, which is independent of P and r, concerns stationary convection. Broken curves 
correspond to overstability for several values of A, with P = 10.0 and r = 0.1. For A = 
0 (Maxwell model) we recover the values obtained by Vest and Arpaci [5]  and Sokolov 
and Tanner [5] .  Figure 2 shows the critical wavenumbers and corresponding critical 
Rayleigh numbers, as functions of the parameter A for r = 0.1 and P = 10.0. The critical 
wavenumber k', decreases and the critical Rayleigh number R ', increases with increasing 
A. 

For Af = 0.3156 the critical Rayleigh numbers coincide (the values that characterise 
these frontier points will be labelled with the subscript f i n  the following), and the rest 
of the critical values are k:,f = 2.221, k:,f = 2.810 and wF = 5.279. This is the point 
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Figure3. Dependence of (a)  the relaxation 
time Ti, ( b )  the critical wavenumber k;,i 
and (c) the critical frequency w f  at the 
crossover between oscillatory and station- 
ary convection, as a function of the A for 
various values of P (free-free BC). 

where the lowest threshold changes from oscillatory to stationary instabilities. For 
A > Afoverstable motions cannot appear spontaneously in a system of infinite horizontal 
extent. However, overstable motions are still possible in a system with a fixed wave- 
number. In this situation CT points can be reached. In particular, the quadratic minimum 
in the curve R,(k)  disappear for A(cT) = 0.3711, ~ ' ( cT)  = 2.761, R'(CT) = 702.1 and 
w c  = 0 (for P = 10.0 and r = 0.1) leading to a degenerate mpoint .  

We present now the results on the influence of the parameter A and P on that frontier 
between oscillatory and stationary convection. Figure 3 gathers the main results. In 
figure 3(a) we show the dependence of Tf as a function of the parameter A. In the region 
above these curves the system is unstable under oscillatory convection. (Stationary 
motions are the unstable modes below these curves.) For a fixed A, rf decreases with 
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increasing P.  This means that the higher the viscous effects, the lower the relaxation 
time necessary to start overstability for a fixed R. In the case of A = 0 (Maxwell fluid) 
and P-, cc the minimum value Tf = 0.039 is obtained (Zielinska and co-workers [6]) .  
The results of the Newton fluid is recovered in the limit of A = 1 independently of the 
value of r. This is the reason for the divergence of Tf in that limit. 

The values of the critical wavenumber for oscillatory instability in the frontier k i , f  as 
a function of A is quoted in figure 3(b) .  Notice that in the limit A = 0 (Maxwell model) 
the values of k i , ,  are greater than kS.f, and the difference between them increases with 
P. (For example for P = 100 and A = 0, kk,f/kg,f  = 5.6 and U: = 579.8. but that ratio 
decreases to 1.8 and the frequency to U F = 81.7 for A = 0.01 .) With increasing A, k i , f  
and U T  decrease rapidly until in the limit A-+ 1 (Newtonian fluid), one recovers 
k i  - kS independently of the value of P. 

The oscillation frequency U F as a function of A is shown in figure 3(c).  This frequency 
U ;  is very large in the limit A + 0, while it tends to zero when A +  1, because over- 
stability disappears in this limit. From these results we remark that in the pure Maxwell 
model the critical wavenumber and the oscillation frequency increase monotonically 
when P increases, reaching very unrealistic values. However, with a small retardation 
time or, equivalently, a small A, we recover more reasonable values for the critical 
parameters. 

3.2. Rigid-rigid boundary conditions 
We examine in this sub-section the consequences of the rigid-rigid BC in convection in 
viscoelastic fluids. In principle, this drastic change in the BC, compared with the free- 
free case, could lead to qualitative changes in the dynamics of the system. Moreover the 
results with these realistic BC could be compared with experiments. We start from ( 9 )  
and (10) with the BC (ii) (7b), which constitute an eigenvalue problem whose exact 
solution entails a rather involved numerical procedure [5].  Here we take a useful 
numerical method introduced by Chock and Schechter [ 121 that converts the Bcproblem 
into an initial value problem. This method has been widely used in hydrodynamical 
instability problems [13]. The main steps of this method are explained in the following. 

First we take as variables u 1  = w, u2 = D w ,  u3  = D2w, u4 = D3w, u j  = T ,  u6 = D T ,  
which obey a system of differential equations in the form 

D u ,  = M , ( P ,  R ,  k ,  0, r, A ) u ,  (13) 
where the components M,, of matrix M are straightforwardly obtained from equations 
(9) and (10). The natural BC (7b)  are rewritten for these variables as 

UI(0) = u*(O) = Uj(0)  = 0 
u , ( l )  = u*(1)  = U j ( 1 )  = 0. 

(14a) 

(14b) 
This system admits a set of six linearly independent solutions U’, where the superscript j 
is the index for these solutions j ( j  = 1, . , . , 6 )  for each variable U , .  As usual, we choose 
the initial values u’,(O) = 6,. The BC (14) imply the following relation 

det(uj(1)) = 0 i = 1 , 2 , 5  j = 3 , 4 , 6 .  (15) 

From this relation and the general solutions of (13) one obtains the marginal curves. 
The advantage of this numerical method is its quick convergence, although some prob- 
lems can appear for very high values of the fluid parameters [ 131. 

The stability curves for stationary and oscillatory convection are shown in figure 4, 
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Figure 4. Marginal curves for rigid-rigid 
BC. The full curve refers to stationary con- 
vection, the broken curves to overstability. 

for different values of the ratio A.  In general, the thresholds are higher for BC (ii) than 
for BC (i). Figure 5 shows the critical Rayleigh number and the critical wavenumber for 
stationary and oscillatory instabilities, as a function of A for P = 10 and r = 0.1. We 
obtain that RS = R', for Af = 0.5104. In this case also the wavenumbers are unequal at 
this frontier point ki  = 3.116, k:,, = 3.716, o! = 4.276. The degenerate CT point is 
obtained for A(cT) = 0.5493, kC(CT) = 3.680 and R'(cT) = 1780.3 with oc = 0. The 
influence of the ratio A on the convection is also qualitatively similar to that obtained 
for BC (i) .  

at the frontier 
between oscillatory and stationary instability. These results are qualitatively the same 
as those in figure 3 for BC (i), the only difference being that Tf (i) > Tf (ii), k:,f (i) < 
k',,f (ii) and w ;  (i) <oC (ii). Therefore the main result in this subsection is that the BC 
for the velocity field introduce only quantitative, but not qualitative, changes in the 
convective thresholds. 

Figure 6 shows the critical values of the parameters Tf, k',,f and 



Linear instability in viscoelastic fluid convection 1289 

i 
0 0.4 0 8  

I\ 

Figure6. Dependence of (a )  the relaxation 
time Ti, ( b )  the critical wavenumber k:,f 
and (c) the critical frequency w; at the 
crossover between oscillatory and station- 
ary convection, as a function of A for vari- 
ous values of P (rigid-rigid BC). 

4. Summary and conclusions 

We have solved the linear stability theory of a viscoelastic fluid obeying the Jeffreys 
model. This model accounts for the elasticity of the fluid by means of a relaxation time 
and a retardation time for stresses. It includes the Maxwell model as a particular case. 
As stressed by many authors, the Jeffreys model is one of the most suitable linear models 
to compare with experiments. We find that oscillatory convection exists between the 
two limiting cases of Maxwellian and Newtonian fluids. Free-free boundary conditions 
(i) and the more realistic rigid-rigid ones (ii) have been treated separately. 

The existence of codimension-two (CT) point and the values of the critical parameters 
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in these points have been also determined. Although possible, these points are hardly 
observable under normal experimental convective conditions. 

The dependence of the critical wavenumber k", ,  and frequency w : ,  and the value of 
the relaxation time Tf at the frontier where the lowest threshold changes from oscillatory 
to stationary convection have been determined for different values of the retardation 
ratio A and the Prandtl number P.  The present calculations show that the Jeffreys model 
allows one to correct some of the limitations of the Maxwell model for convection. In 
the limit of a Maxwellian fluid (A = 0) these critical values are very unrealistic for high 
P.  However, with the Jeffreys model, even for small retardation ratios A the values of 
k:,f and wf at this frontier enter into the observable range. 

The differences on the critical parameters for the two kinds of boundary conditions 
(BC) examined here are only quantitative and, as expected, the system is more stable in 
the rigid-rigid situation. 
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